

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Carbon-13 Nuclear Magnetic Resonance of Some New β -Blockers. - Part I

Hassan Y. Aboul-enein^a; Mahmoud M. A. Hassan^a; Ahmad I. Jado^a

^a Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

To cite this Article Aboul-enein, Hassan Y. , Hassan, Mahmoud M. A. and Jado, Ahmad I.(1983) 'Carbon-13 Nuclear Magnetic Resonance of Some New β -Blockers. - Part I', *Spectroscopy Letters*, 16: 3, 151 — 158

To link to this Article: DOI: 10.1080/00387018308062331

URL: <http://dx.doi.org/10.1080/00387018308062331>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Carbon-13 Nuclear Magnetic Resonance of
Some New β -Blockers - Part I*.

Hassan Y. Aboul-Enein**, Mahmoud M.A. Hassan and Ahmad I. Jado

Department of Pharmaceutical Chemistry, College of Pharmacy,
King Saud University, Riyadh, Saudi Arabia.

Abstract:

The assignment of the Carbon - ^{13}C NMR resonances of Penbutolol, Timolol, Pindolol and Nadolol, new and non-cardioselective β -adrenergic blockers, in deuterated chloroform or deuterated dimethylsulfoxide has been made. The assignments were made using model compounds, chemical shift arguments, peak intensities and signal multiplicities observed in the single-frequency off-resonance decoupled (SFORD) spectra. From the ^{13}C -NMR chemical shifts it can be concluded that the aromatic ring systems in these compounds have negligible effects on the 2-propanol side-chain which is essential for the biological activity of β -adrenergic blockers.

Introduction:

Several new β -adrenergic blockers which are mainly used for the treatment of essential hypertension and angina pectoris among other conditions (1), have been marketed recently. In conjunction with work on the determination and development of new analytical procedures for some newly introduced β -blockers (2, 3, 4, 5), we undertook a ^{13}C -NMR study of some of these compounds.

* Presented at 183rd ACS National Meeting, Las Vegas, Nevada,
March 28- April 2, 1982. Abstract MEDI 016.

** Author to whom correspondence should be addressed.

The β -adrenergic blockers studied are:

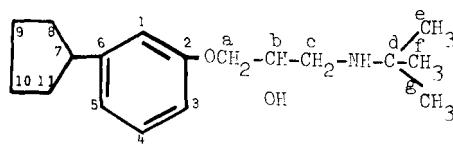
Penbutolol (I) : 1-(tert-butylamino)-3-(o-cyclo pentylphenoxy)-2-propanol

Timolol (II): (S)-1-[(1,1-dimethylethyl)amino]-3-[[4-(4-morpholinyl)1, 2, 5-thiadiazol-3yl] oxy] -2-propanol

Pindolol (III): 1-(indol-4-yloxy)-3-(isopropylamino)-2-propanol

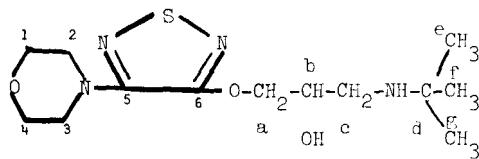
Nadolol (IV): 1-(tert-butylamino)-3- [(5,6,7,8-tetrahydro-cis-6-, 7-dihydroxy-1-naphthyl)oxy]-2-propanol.

The aim of this work is to study ^{13}C -chemical shifts for the aforementioned new β -blockers and to investigate the effect of the different aromatic rings on the carbon chemical shifts of the aliphatic 2-propanol side chain which is essential for the biological activity.


The chemical shift data presented in this report could be applied to assign carbon chemical shifts of similar compounds and hence their structural elucidation.

Results and Discussion:

The ^{13}C -NMR chemical shifts of penbutolol, timolol, pindolol and nadolol are presented in tables 1-4 respectively.


The carbon resonances have been assigned in accordance with:

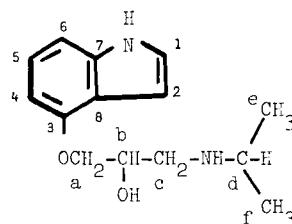
- A) Chemical shift considerations (6), particularly about substituent effects in the benzene series (7).
- B) Signal multiplicities determined from off-resonance decoupling.
- C) Peak intensities.
- D) Comparison of chemical shifts for model compounds structurally related to the β -blockers under study and correlation of unsubstituted and some substituted benzene, indole and tetrahydro-

^{13}C -NMR of Penbutolol (CDCl_3) - Table 1.

<u>Carbon No.</u>	<u>Chemical Shift</u> (ppm)	<u>Carbon No.</u>	<u>Chemical Shift</u> (ppm)
C-1	126.54 (d)	C-a	70.81 (t)
C-2	156.30 (s)	C-b	68.96 (d)
C-3	126.25 (d)	C-c	44.94 (t)
C-4	120.71 (d)	C-d	50.19 (s)
C-5	111.56 (d)	C-e	
C-6	134.52 (s)	C-f	
C-7	39.29 (d)	C-g	29.08 (q)
C-8			
C-9			
C-10			
C-11			

s = singlet, d = doublet, t = triplet, q = quartet

¹³C-NMR of Timolol in CDCl₃ - Table 2


Carbon No.	Chemical Shift (ppm)	Carbon No.	Chemical Shift (ppm)
C-1	66.47 (t)	C-a	72.90 (t)
C-2	47.95 (t)	C-b	68.32 (d)
C-3	47.95 (t)	C-c	48.53 (t)
C-4	66.47 (t)	C-d	50.39 (s)
C-5	149.89 (s)	C-e	
C-6	153.79 (s)	C-f	29.04 (q)
		C-g	

s = singlet, d = doublet, t = triplet, c = quartet

naphthalene rings to penbutolol, pindolol, and nadolol respectively(8).

Furthermore, the ¹³C-NMR chemical shifts for the 2-propanol side chain are shown in Table 5. It can generally be pointed out that the aromatic ring carbons have little effect on the carbon chemical shift of the methylene group -C_aH₂- of the side chain as seen in nadolol.

Deshielding effect for the methylene group -C_cH₂- in timolol and pindolol is also expected due to strong ring current of 1,2,5-thiadiazole and indole ring system induced by the benzene ring as seen in penbutolol.

^{13}C -NMR of Pindolol in (DMSO- d_6) - Table 3

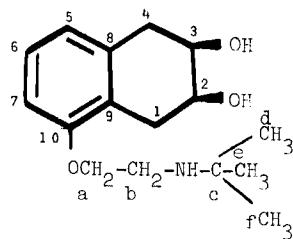
Carbon No.	Chemical Shift (ppm)	Carbon No.	Chemical Shift (ppm)
C-1	123.19 (d)	C-a	70.81 (t)
C-2	104.77 (d)	C-b	68.51 (d)
C-3	152.13 (s)	C-c	48.05 (t)
C-4	98.34 (d)	C-d	50.10 (d)
C-5	100.19 (d)	C-e	22.90 (q)
C-6	121.53 (d)	C-f	
C-7	137.32 (s)		
C-8	118.51		

s = singlet, d = doublet, t = triplet, q = quartet.

However, there is a close relationship between the chemical shifts of these β -blockers studied.

Experimental:

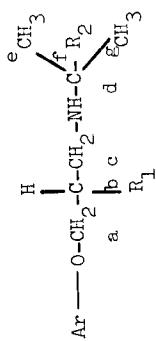
Authentic samples of β -blockers were kindly donated from the manufacturers as listed:


Pindolol, Sandoz Ltd., Basle, Switzerland.

Penbutolol, Hoechst, Frankfurt-Main, West Germany.

Timolol, Merck Sharpe & Dohme, Pahway, N.J., U.S.A.

Nadolol, Squibb & Sons Inc., New Brunswick, N.J., U.S.A.,


¹³C-NMR of Nadolol in DMSO-d₆ - Table 4

<u>Carbon No.</u>	<u>Chemical Shift</u> (ppm)	<u>Carbon No.</u>	<u>Chemical Shift</u> (ppm)
C-1	34.40 (t)	C-a	67.98 (t)
C-2	69.04 (d)	C-b	45.32 (t)
C-3	69.04 (d)	C-c	49.43 (s)
C-4	70.57 (d)	C-d	
C-5	125.87 (d)	C-e	28.88 (q)
C-6	108.14 (d)	C-f	
C-7			
C-8	120.71 (d)		
C-9	135.50 (s)		
C-10	156.28 (s)		

s = singlet, d = doublet, t = triplet, q = quartet.

Side Chain Carbon Chemical Shifts - Table 5

Compound	Ar	Carbon Chemical Shifts δ (ppm)							G
		Solvent	A	B	C	D	E	F	
Penbutolol $R_1=OH, R_2=Me$		CDCl ₃	70.81 (t)	68.96 (d)	44.94 (t)	50.19 (s)	29.08 (q)	29.08 (q)	
Timolol $R_1=OH, R_2=Me$		CDCl ₃	72.90 (t)	68.32 (d)	48.53 (t)	50.39 (s)	29.04 (q)	29.04 (q)	
Pindolol $R_1=OH, R_2=H$		DMSO-d ₆	70.81 (t)	68.51 (d)	48.05 (t)	50.10 (d)	22.90 (q)	-	22.90 (q)
Nadolol $R_1=H, R_2=Me$		DMSO-d ₆	67.98 (t)	45.32 (t)	-	49.43 (s)	28.88 (q)	28.88 (q)	

s = singlet, d = doublet, t = triplet, q = quartet.

through Squibb Middle East, S.A.

^{13}C -NMR spectra were recorded on Jeol FX-100 and Varian FT-80 Fourier transform spectrometers operating at 25 MHz and 20 MHz respectively for carbon spectra. The compounds were studied as solutes in CDCl_3 or DMSO-d_6 as indicated using 10 mm sample tubes at $24 \pm 2^\circ\text{C}$.

All chemical shifts were measured relative to the trimethylsilyl group of tetramethylsilane (TMS). In all cases, both proton noise decoupled and single frequency off-resonance spectra were obtained. Accumulation of transients made at a spectral width of 5000 Hz;

References:

1. J.W. Black, D.G. McDevitt, B.N. Singh, T.L. Goldfarb, Current prescribing 12, 23 (1979).
2. M.E. Mohamed, M.S. Tawakkol and H.Y. Aboul-Enein, Anal. Letters 15, 132, 205 (1982).
3. M.E. Mohamed, M.S. Tawakkol and H.Y. Aboul-Enein, Die Pharmazie, 36, 516 (1981).
4. M.S. Tawakkol, M.E. Mohamed and H.Y. Aboul-Enein, Chromatographia, 14, 587 (1981).
5. M.E. Mohamed, M.S. Tawakkol and H.Y. Aboul-Enein, Anal. Letters, 14, 349 (1981).
6. D.F. Ewig, Org. Magnet Reson., 12, 499 (1979).
7. G.C. Levy and G.L. Nelson, ^{13}C -NMR for Organic Chemists, Wiley - Interscience, New York 1972.
8. B. Wolfgang, ^{13}C -NMR Spectral Data, "Living" COM-Microfiche collection of reference material, Weinheim, New York, Verlag Chemic 1979.

Received: October 19, 1982
Accepted: November 30, 1982